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Motivation

Sometimes (e.g., trying to solve a Diophantine equation) we need to work
in the ring OK of algebraic integers of a number field K, a finite extension
of Q.

The ring OK is not a unique factorisation domain in general, but it is a
Dedekind domain, hence any non-zero ideal of OK can be uniquelly written
as a product of prime ideals.

So instead of decomposing an algebraic integer a ∈ OK into the product
of irreducible integers of OK we can decompose the principal ideal aOK into
the product of prime ideals.

But at some point we need to return back from ideals to algebraic integers
and this is possible only if we have a principal ideal. Then a generator of
this principal ideal is well-defined up to a unit factor.

The obstruction for an ideal to be principal is hidden in the class group
clK , which is the quotient of the group of all fractional ideals of OK modulo
the subgroup of the principal ideals.

So we would like to describe the following arithmetic objects of OK : its
class group clK and its group of units O×K .

The group of units O×K is a finitely generated abelian group

The torsional part WK of O×K is a cyclic finite group consisting of all the
roots of unity belonging to K.

The rank of O×K is given by Dirichlet unit theorem: O×K ∼= WK × Zr,
r := rankZO×K = r1 + r2 − 1, where r1 is the number of real embeddings of
K and r2 is the number of pairs of complex embeddings of K. Hence the
degree [K : Q] = r1 + 2r2.

These embeddings can be determined also as follows: there is α ∈ K such
that K = Q(α). The minimal polynomial f(X) ∈ Q[X] of α has r1 real roots
α1, . . . , αr1 and r2 pairs of complex roots αr1+1, αr1+1, . . . , αr1+r2 , αr1+r2 .

Let σi be the embedding determined by α 7→ αi. Then σi is real if and
only if i ≤ r1.

Therefore we know the rank r of O×K but to find a system of generators
of O×K is a very difficult, often even intractable problem.
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Geometry of units

Let ` : O×K → Rr+1 be defined by `(ε) = (. . . , δi log |σi(ε)|, . . . ), where
δi = 1 for i ≤ r1 and δi = 2 otherwise.

Then ker ` = WK and im ` ⊂ H =
{

(x1, . . . , xr+1) |
∑r+1

i=1 xi = 0
}

.

For any r-tuple η1, . . . , ηr ∈ O×K we define the regulator

R(η1, . . . ηr) =
∣∣det(δiσi(ηj))i,j=1,...,r

∣∣.
Hence the regulator R(η1, . . . ηr) is given by the r-dimensional volume of the
parallelepiped spanned by `(η1), . . . , `(ηr) in H.

So R(η1, . . . ηr) = 0 if and only if the units η1, . . . , ηr are (multiplica-
tively) dependent.

The regulator RK of the field K is defined to be the regulator of any
system of fundamental units, i.e., any r-tuple generating (together with WK)
the group of all units O×K .

Hence [O×K : 〈Wk ∪ {η1, . . . , ηr}〉] = R(η1,...ηr)
RK

, if R(η1, . . . ηr) 6= 0.

Dedekind ζ-function of K

Let ζK denote the Dedekind ζ-function of K. It is defined for any s ∈ C,
<(s) > 1, by the absolutely convergent series

ζK(s) =
∑
A

(N(A))−s,

where A in the sum runs over all nonzero ideals of OK and N(A) = |OK/A|
is the absolute norm of A.

Since OK is a Dedekind domain, each nonzero ideal A can be written as
a product of prime ideals in a unique way.

The absolute norm is multiplicative and so ζK(s) can be written by the
Euler product over all prime ideals of OK : if <(s) > 1 then

ζK(s) =
∏
P

(1−N(P)−s)−1.
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The class group clK is a finite abelian group

It was proven by Erich Hecke that ζK(s) has a meromorphic continuation
to C having the only pole in s = 1. This is a simple pole with residuum

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

|WK | ·
√
|DK |

,

where hK = | clK | is the class number and DK is the discriminant of K,
which can be defined as follows:

The additive group OK is a torsion-free abelian group whose rank is
rankZOK = [K : Q] = r1 + 2r2. Let b1, . . . , br1+2r2 be a system of inde-
pendent generators of OK , then the discriminant DK is the square of the
determinant

det
(
σ1(bj), . . . , σr1+r2(bj), σr1+1(bj), . . . , σr1+r2(bj)

)
j=1,...,r1+2r2

.

The aim of this series of talks: Abelian fields

Let K be an abelian field, i.e., K/Q is a finite Galois extension having
abelian Galois group Gal(K/Q).

Then K is a subfield of a cyclotomic field due to Kronecker – Weber
theorem and we can be more specific:

• we have a group of circular units which is a subgroup of O×K of finite
index defined by explicit generators;

• there is a formula for this index having a factor hK+ , the class number
of the maximal real subfield K+ = K ∩ R;

• if K ⊂ R, we can use circular units to get annihilators of the class
group clK .

The main aim of this series of talks consists in an explanation of these
three items.
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Dirichlet characters

A Dirichlet character modulo m ∈ Z, m > 0, is a group homomorphism
χ : (Z/mZ)× → C×.

If m | n then χ induces a homomorphism (Z/nZ)× → C× by composition
with the natural map (Z/nZ)× → (Z/mZ)×.

Therefore, we can regard χ as being defined modulo m or n, since both
are essentially the same map. It is convenient to choose n minimal and call
it the conductor of χ, denoted by fχ. Then χ can be given by a Dirichlet
character modulo m if and only if fχ | m.

To emphasize that we consider χ modulo fχ, we say that χ is a primitive
character.

Often we regard a Dirichlet character χ as a map Z → C by letting
χ(a) = 0 if (a, fχ) 6= 1; and χ(a) = χ(a + fχZ) if (a, fχ) = 1. So χ is then
periodic of period fχ.

Example: for any odd prime p the Legendre symbol
(
a
p

)
is a Dirichlet

character of conductor p.

The group of Dirichlet characters

To define the product of Dirichlet characters χ and ψ, letm = lcm(fχ, fψ)
and let γ : (Z/mZ)× → C× be defined by γ(a) = χ(a)ψ(a) if (a,m) = 1;
then the product χψ is defined to be the primitive Dirichlet character asso-
ciated to γ.

The set of all primitive Dirichlet characters together with this product
forms an infinite abelian group.

Example: Let the Dirichlet characters χ, ψ be given by

χ(a) =


1 if a ≡ ±1 (mod 12),

−1 if a ≡ ±5 (mod 12),

0 otherwise,

ψ(a) =


1 if a ≡ 1 (mod 3),

−1 if a ≡ 2 (mod 3),

0 otherwise.

Then fχ = 12, fψ = 3, but fχψ = 4, since

(χψ)(a) =


1 if a ≡ 1 (mod 4),

−1 if a ≡ 3 (mod 4),

0 otherwise.

Note that (χψ)(3) = −1 6= 0 = χ(3) · ψ(3).
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Cyclotomic polynomials

Let m be a positive integer, ζm = e2πi/m. The m-th cyclotomic polyno-
mial is defined as

Φm(x) =
∏

a=1,...,m, (a,m)=1

(x− ζam).

The polynomial Φm is monic and has a root ζm.

Since
∏
d|m Φd(x) = xm − 1, by induction we get Φm(x) ∈ Q[x].

As its roots are algebraic integers, Φm(x) ∈ Z[x].

Finally, Φm(x) is irreducible over Z. If m is a prime power, the irre-
ducibility of Φm(x) can be obtained using Eisenstein criterion. In general
the proof of its irreducibility is tricky but short and not complicated.

Hence the cyclotomic polynomial Φm is the minimal polynomial of ζm
over Q, and the m-th cyclotomic field Qm = Q(ζm) is of degree [Qm : Q] =
ϕ(m).

Dirichlet characters as characters on a Galois group

Therefore we have (Z/mZ)× ∼= Gal(Qm/Q), where the class a + mZ
(here (a,m) = 1) corresponds to the automorphism σa of Qm determined
by σa(ζm) = ζam.

If χ is a Dirichlet character of conductor fχ | m then χ can be understood
as a character on Gal(Qm/Q).

Example: Let us return to the Dirichlet character χ given by

χ(a) =


1 if a ≡ ±1 (mod 12),

−1 if a ≡ ±5 (mod 12),

0 otherwise.

Considering χ as a character on Gal(Q12/Q) = {σ1, σ5, σ−1, σ−5}, we get
kerχ = {σ1, σ−1} = Gal(Q12/Q(

√
3)).

Therefore the character χ gives the field Q(
√

3).
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Abelian field given by a finite group of Dirichlet characters

Let X be a finite subgroup of the group of all Dirichlet characters, let
m be the least common multiple of conductors fχ, χ ∈ X.

Then all χ ∈ X are characters on Gal(Qm/Q) and they define a unique
subfield K of Qm as follows: Gal(Qm/K) is the intersection of the kernels
of all χ ∈ X. Moreover χ ∈ X give all characters on Gal(K/Q), since

Gal(K/Q) ∼= Gal(Qm/Q)/Gal(Qm/K).

The above procedure X 7→ K forms a natural isomorphism between the
lattice of all finite subgroups of the group of all Dirichlet characters and the
lattice of all abelian fields.

It allows to describe many arithmetical properties of an abelian field K in
terms of properties of the corresponding subgroup X of Dirichlet characters.

Arithmetical properties of K via the corresponding X

Let K be an abelian field and X be the group of Dirichlet characters of
K. There is a non-degenerate natural pairing

Gal(K/Q)×X → C×,

so we can identify X with the group of characters on Gal(K/Q). We also
have a noncanonical isomorphism Gal(K/Q) ∼= X.

It is convenient to classify characters into two types: if χ(−1) = 1 then
χ is called even; if χ(−1) = −1 then χ is called odd.

Since the complex conjugation corresponds to σ−1, it is clear that K is
real if and only if each χ ∈ X is even. Or even more precisely: the number
r2 of pairs of complex embeddings of K equals the number of odd characters
in X.

A much deeper result is the following Conductor-Discriminant Formula

DK = (−1)r2
∏
χ∈X

fχ =
∏
χ∈X

χ(−1)fχ.
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Decomposition of prime numbers in OK via X

Let K be an abelian field and X be the group of Dirichlet characters of
K, let G = Gal(K/Q).

For a fixed prime number p we can decompose the ideal

pOK = (P1 · . . . ·Pg)
e

into prime ideals Pi of the same norm N(Pi) = pf .

So e, f , and g are the ramification index, the residue class degree, and
the number of prime ideals of K lying above p, respectively.

Since G is abelian, all prime ideals Pi have the same decomposition
group D = {σ ∈ G | σ(Pi) = Pi} and the same inertia group I = {σ ∈ G |
∀α ∈ OK : σ(α) ≡ α (mod Pi)}.

The inertia field L and the decomposition field M are determined by
Gal(K/L) = I and Gal(K/M) = D. Then

Y = {χ ∈ X | χ(p) 6= 0} is the group of Dirichlet characters of L,

Z = {χ ∈ X | χ(p) = 1} is the group of Dirichlet characters of M .

Decomposition of prime numbers graphically

X is the group of Dirichlet characters of K, p is a prime number,
Y = {χ ∈ X | χ(p) 6= 0} is the group of Dirichlet characters of L,
Z = {χ ∈ X | χ(p) = 1} is the group of Dirichlet characters of M ,
I = Gal(K/L) ∼= X/Y , D = Gal(K/M) ∼= X/Z.

K

[K : L] = e prime ideals above p ramify

P1 . . . Pg

L

[L :M ] = f prime ideals above p are inert

P1 . . . Pg

M

[M : Q] = g prime ideal pZ splits completely

p1 . . . pg

Q pZ

pOM = p1 . . . pg, piOL = Pi, PiOK = Pe
i .
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Dedekind ζ-function ζK of an abelian field K

Let K be an abelian field and X be the group of Dirichlet characters of
K. Recall that for s ∈ C, <(s) > 1,

ζK(s) =
∏
P

(1−N(P)−s)−1.

Since each prime ideal P is a divisor of a unique prime number p, denoting
fp and gp the residue class degree and the number of prime ideals of K lying
above p, respectively, we have

ζK(s) =
∏
p

(1− p−fps)−gp =
∏
p

∏
χ∈X

(1− χ(p)p−s)−1,

again if <(s) > 1. Hence ζK(s) =
∏
χ∈X L(s, χ), where

L(s, χ) =
∏
p

(1− χ(p)p−s)−1 =
∞∑
n=1

χ(n)n−s

is the Dirichlet L-function corresponding to χ.

Comparing two formulas for the residuum of ζK(s) at s = 1

Let K be an abelian field and X be the group of Dirichlet characters of
K. Then we have∏

χ∈X, χ 6=1

L(1, χ) = lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

|WK | ·
√
|DK |

.

An important corollary: for each χ ∈ X, χ 6= 1, we have L(1, χ) 6= 0 (this
allows to prove Dirichlet’s theorem on primes in arithmetic progressions).

The formula above can be used to compute the product hKRK . We have

L(1, χ) =

{
− πi
fχτ(χ)

∑fχ−1
a=1 χ(a) · a if χ is odd,

− 1
τ(χ)

∑fχ−1
a=1 χ(a) · log |1− ζafχ | if χ is even,

where τ(χ) =
∑fχ

a=1 χ(a)ζafχ is the Gauss sum of χ.
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Analytic Class Number Formula for a real abelian field K

Let K be a real abelian field and X be the group of Dirichlet characters
of K. Then we have

hKRK =
∏

χ∈X, χ 6=1

(
−1

2

fχ−1∑
a=1

χ(a) · log |1− ζafχ |
)
. (1)

The factors of (1) have the following interpretation: for even χ 6= 1

L′(0, χ) = −1

2

fχ−1∑
a=1

χ(a) · log |1− ζafχ |, (2)

where we deal with the analytic continuation of L(s, χ) to C.

Have a look at these interesting numbers that have appeared here:

1− ζafχ , a = 1, . . . , fχ − 1.

These are so-called circular numbers, the main topic of our talks!

Basic properties of circular numbers

Recall that Φm(x) is the m-th cyclotomic polynomial.

Since
∏
d|m Φd(x) = xm − 1, we have

∏
1<d|m Φd(x) =

∑m−1
i=0 xi, setting

x = 1 we obtain
∏

1<d|m Φd(1) = m.

So for any m > 1 we obtain by induction

Φm(1) =

{
p if m is a power of a prime p,

1 otherwise.

Hence if m is not a prime power, 1 − ζam is a unit of OQm for any a ∈ Z,
(a,m) = 1.

Suppose that m is a power of a prime p. Let a, b ∈ Z, p - ab. Since
there is a positive integer k satisfying ak ≡ b (mod m), we have 1 − ζbm =
(1− ζam) ·

∑k−1
i=0 ζ

ia
m . Hence, using the symmetry a↔ b, we get that

1− ζbm
1− ζam

is a unit of OQm .
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Basic properties of circular numbers, relations

Let 0 < d | m, then

d−1∏
i=0

(x− ζid) = xd − 1,

put x = ζ−am for any a ∈ Z, m - a, to get

d−1∏
i=0

(ζ−am − ζid) = ζ−adm − 1,

hence
d−1∏
i=0

(1− ζa+i·(m/d)m ) = 1− ζadm . (3)

We also have
1− ζam = −ζam(1− ζ−am ). (4)

Groups of circular numbers/units of a cyclotomic field

Let m ∈ Z, m > 1. The group Dm of circular numbers of m-th
cyclotomic field Qm is defined as the subgroup of the multiplicative group
Q×m generated by the following set:

Dm =
〈
{−1, ζm} ∪ {1− ζam | a ∈ Z, 1 ≤ a < m}

〉
,

so Dm contains all roots of unity in Qm.

The group Cm of circular units of m-th cyclotomic field Qm is defined
as the intersection Cm = Dm ∩ O×Qm .

It is clear that we do not need all generators used in the definition of
Dm, for example, using (4), we get

Dm =
〈
{−1, ζm} ∪ {1− ζam | a ∈ Z, 1 ≤ a ≤ m

2 }
〉
.

But there are more relations in general!

The situation is easier if m is a prime power.
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The prime-power case

Let us suppose m = pk > 2, where p is a prime and k ∈ Z. Denote
M = {a ∈ Z, 1 < a ≤ m

2 , p - a}. Relations (3) and (4) imply that

Dm =
〈
{−1, ζm} ∪ {1− ζam | a ∈M ∪ {1}}

〉
,

hence

Cm =
〈
{−1, ζm} ∪

{1− ζam
1− ζm

| a ∈M
}〉
.

Since ηa = 1−ζam
1−ζm ζ

(1−a)/2
m ∈ R, we can work in Q+

m = Qm ∩ R, because

Cm ∩ R =
〈
{−1} ∪ {ηa | a ∈M}

〉
⊆ O×

Q+
m
.

There are exactly ϕ(m)
2 − 1 = rankZO×Q+

m
units ηa there.

Let us compute their regulator to find out whether they are multiplica-
tively independent.

The regulator of ηa, a ∈M , in Q+
m, for m = pk

Recall: M = {a ∈ Z, 1 < a ≤ m
2 , p - a}, ηa = 1−ζam

1−ζm ζ
(1−a)/2
m ,

R(ηa; a ∈M) =
∣∣det

(
log |1− ζabm | − log |1− ζbm|

)
a,b∈M

∣∣.
Theorem on group determinants. Let G be a finite abelian group,

Ĝ the group of all characters of G, i.e., homomorphisms G→ C×. Then for
any function f : G→ C we have

det
(
f(g · h−1)

)
g,h∈G =

∏
χ∈Ĝ

∑
g∈G

χ(g)f(g),

det
(
f(g · h−1)− f(g)

)
g,h∈G−{1} =

∏
χ∈Ĝ, χ 6=1

∑
g∈G

χ(g)f(g).

Let G = (Z/mZ)×/{1,−1}, then M ∪ {1} is a system of representatives
of G. Then Ĝ is the group of even Dirichlet characters χ whose conductor
fχ | m. Let f(a) = log |1− ζam|. Using (3) we get for any such χ 6= 1∑

a∈M∪{1}

χ(a)f(a) = 1
2

∑
1≤a<fχ, p-a

χ(a) log |1− ζafχ |

and (1) gives R(ηa; a ∈M) = hQ+
m
·RQ+

m
, i.e.,

[O×Qm : Cm] = [O×
Q+
m

: (Cm ∩ R)] = hQ+
m
,

which has been known already to Kummer.
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Generalization to Q+
m for any m

For a general m we need another method. Our computation is based on
the fact that there is a circular number ε = 1− ζm such that

Cm ∩ R =
〈
{−1} ∪

{
|εσ−1| | σ ∈ Gal(Q+

m/Q)
}〉
,

where εσ−1 = εσ

ε .

But such a circular number does not exist in general, i.e. for m not being
a prime-power!

If m is not a prime-power, then even sometimes the units

(1− ζm)σ−1, σ ∈ Gal(Q+
m/Q)− {1},

are multiplicatively dependent.

Ramachandra’s approach

Let m > 2, m 6≡ 2 (mod 4). Define

ε =
∏

1<d|m, (d,m
d
)=1

(1− ζd).

Then the regulator of |εσ−1|, where σ ∈ Gal(Q+
m/Q)− {1}, can be com-

puted similarly as in the case of m being prime-power (up to some manage-
able technical difficulties).

This shows that, for each such m, the regulator is non-zero. In fact, it
is a large multiple of hQ+

m
RQ+

m
.

This implies that the index [O×Qm : Cm] = [O×
Q+
m

: Cm∩R] is finite though

we are not able to compute it by this method.
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Sinnott’s computation of the index [O×Qm : Cm]

Theorem (Sinnott). Let m ∈ Z, m > 1, m 6≡ 2 (mod 4). Then

[O×Qm : Cm] = 2b · hQ+
m
,

where b is given by the number g of prime divisors of m as follows

b =

{
0 if g = 1,

2g−2 − g + 1 if g > 1.

A key ingredient in Sinnott’s proof is a construction of his module U and
some cohomology computation.

By difficult and extensive numerical computations we know that hQ+
m

= 1

if m ≤ 135. So in this case we have Cm = O×Qm , each unit is circular.

We also know hQ+
136

= 2, so [O×Q136
: C136] = 2.

Back to the relations

Recall that if 0 < d | m, then
∏d−1
i=0 (1 − ζ

a+i·(m/d)
m ) = 1 − ζadm . This

gives the “distribution relations” (they are also called the “norm rela-
tions”): If a prime p | m, p < m, and p - a ∈ Z, then

NQm/Qm/p(1− ζ
a
m) =

1− ζam/p if p | mp ,
1−ζb

m/p

1−ζb/p
m/p

if p - mp ,

where, in the latter case, b ∈ Z, b ≡ a (mod m
p ), b ≡ 0 (mod p).

If m = p is a prime and p - a ∈ Z, then

NQp/Q(1− ζap ) = p.

Of course, if p | m and p | a then 1− ζam = 1− ζa/pm/p, so in this case

NQm/Qm/p(1− ζ
a
m) = (1− ζa/pm/p)

[Qm:Qm/p].

There are also the “mirror relations”: for any a ∈ Z

1− ζam = −ζam · (1− ζ−am ).
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Theorem of Bass – Ennola

Theorem. Let m ∈ Z, m > 1, m 6≡ 2 (mod 4), and let Am be the
additive abelian group with generators

{g(a) | a ∈ Z/mZ, a 6= 0}

(where 0 means mZ) and relations

g(a) = g(−a) for each 0 6= a ∈ Z/mZ,

d−1∑
j=0

g(a+ jmd ) = g(da) for each 0 < d | m, a ∈ Z/mZ, da 6= 0.

Then there is the following exact sequence of abelian groups

0→ (Z/2Z)cm → Am → Dm/〈±ζm〉 → 0

for an integer cm ≥ 0.
The nonzero elements in the image of (Z/2Z)cm are called relations of

Ennola’s type.
Let g be the number of prime divisors of m. Schmidt proved that cm = 0

if g = 1 and cm = 2g−1 − g if g > 1.

A Z-basis of Cm
For m being a prime-power, we have computed the index [O×Qm : Cm].

The key ingredients has been the construction of a Z-basis of Cm and the
computation of its regulator.

Sinnott was able to compute this index for any positive integerm without
a construction of a Z-basis of Cm.

So do we need a Z-basis of Cm?

Such a basis could be useful when we need to decide whether a given
unit of Qm belongs to Cm or not. A construction of a Z-basis of Cm played
a crucial role in the following result of Gold and Kim:

Theorem. The groups of circular units Cm of cyclotomic fields satisfy
Galois descent, i.e., if n, m are positive integers and n | m then

Cn = Cm ∩Qn.

A description of this basis is very technical; we avoid giving it here.
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Circular units of an abelian field – required properties

Let K be an abelian field.

What should a group C(K) of circular units of K satisfy?

(1) a finite set of explicit generators;

(2) a finite index [O×K : C(K)], which should be a small explicit multiple
of hK+ ;

(3) an understandable Galois-module structure;

(4) the Galois descent (if L ⊆ K then C(L) = C(K) ∩ L);

(5) for K = Qm we should have C(Qm) = Cm defined above.

Can we require all this properties?

Sorry, but we cannot.

Let us have a look why a definition satisfying all these required properties
does not exist. . .

Washington’s definition

Due to the mentioned theorem of Gold and Kim, (4) and (5) are not
contradicting to each other.

Assuming (4) and (5), there is only one possible definition satisfying
both of them:

Let m be the conductor of K (the smallest m such that K ⊆ Qm). The
Washington group of circular units of K is defined as follows:

CW(K) = K ∩ Cm.

But we have neither (1) nor (3). Concerning (2), the index is finite and
relatively small. But we do not have a formula for the index.
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Which fields K have the index [O×K : CW(K)] known?

If K = Qm then CW (K) = Cm and the index is given by Sinnott’s
formula.

If K = Q+
m then [Cm : CW(K)] is an explicit power of 2.

I know only the following two special cases of abelian fields for which we
have a formula for the index (an explicit construction of a Z-basis and the
computation of the index is due to Werl):

• any real abelian field whose Galois group is the direct product of inertia
groups;

• a cyclic field K (i.e., Gal(K/Q) is a cyclic group) satisfying: each
prime which ramifies in K/Q is totally ramified here and the genus
field of K in narrow sense is real.

Therefore in general the Washington group of circular units is too diffi-
cult to work with.

Taking norm instead of intersection

Let m be the conductor of an abelian field K. Let WK be the group of
roots of unity of K.

The group of circular units of conductor level of K is defined by

Ccl(K) = WK · {NQm/K(α) | α ∈ Cm}.

Explicitly

Ccl(K) =
〈
WK ∪

{
NQm/K(1− ζam); a ∈ Z, m - a

}〉
∩ O×K .

But as we shall compute, if (a,m) > 1 then the norm NQm/K(1− ζam) is
a power of an explicit number.

Due to (2) we want the index [O×K : C(K)] to be small, so we should add
these explicit numbers into the set of generators of C(K)!
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Extracting root of NQm/K(1− ζam) for (a,m) > 1

Let m be the conductor of an abelian field K.

Let a ∈ Z, m - a, (a,m) > 1. Put r = m
(a,m) < m, b = a

(a,m) , then

1− ζam = 1− ζbr . We have the following diagram of fields:

Qm

|
KQr

/ \
Qr K
\ /
K ∩Qr

Hence Gal(KQr/K) ∼= Gal(Qr/(K ∩Qr) via restriction.
So for any α ∈ Qr we have

NKQr/K(α) =
∏
σ∈Gal(KQr/K) α

σ =
∏
σ∈Gal(Qr/(K∩Qr) α

σ

= NQr/(K∩Qr)(α).

Moreover NQm/KQr(α) = α[Qm:KQr]. Therefore

NQm/K(1− ζam) = NQm/K(1− ζbr) = NQr/K∩Qr(1− ζ
b
r)

[Qm:KQr].

So we can enlarge Ccl(K) replacing the generator NQm/K(1− ζam) by a new

generator NQr/K∩Qr(1− ζbr).

Sinnott group of circular units of an abelian field

Let m be the conductor of an abelian field K. The Sinnott group of
circular units of K is defined by

CS(K) = 〈±NQr/Qr∩K(1− ζar ); r | m, 1 ≤ a < r〉 ∩ O×K .

Properties of CS(K):

(1) a finite set of explicit generators;

(2) a finite index [O×K : C(K)] = cK · hK+ , we have Sinnott’s formula for
cK , where one of the factors is the index of so-called Sinnott’s module
U ; this factor is not easy to compute in general;

(3) an understandable Galois-module structure given by Sinnott’s module
U ;

(4) the Galois descent does not hold true for CS(K);

(5) for K = Qm we have CS(Qm) = Cm.
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Other definitions of circular units of an abelian field

We have seen that Sinnott’s definition has fulfilled almost all required
properties (well, we do not have Galois descent and one factor in the formula
for the index is not fully explicit).

In the literature we can find other definitions, e.g., groups obtained via
Ramachandra-type construction (Ramachandra, Levesque, Greither) or via
cyclic subfields (Hasse, Leopoldt, Gillard). The groups obtained by both
of these approaches have much easier Galois module structure allowing to
compute the index as hK+ multiplied by an explicit factor, but these factors
are huge.

Another good property of Sinnott’s definition: for p 6= 2 Sinnott’s group
is useful in Iwasawa theory since the p-part of the factors cK stabilizes in
the Zp-tower of the cyclotomic Zp-extension of an abelian field.

Résumé

There are several different definitions giving different groups of circular
units of an abelian field K.

The largest one is the Washington group of circular units CW(K) but
we do not know explicit generators.

The group of circular units of Ramachandra’s type has the easiest possi-
ble Galois module structure. This allows to compute its index and it is used
to prove the p-adic version of the class number formula for an abelian field.

The one being admitted to be optimal is the Sinnott group of circular
units CS(K). This group can be used to derive a result on the class number
or even on the structure of the class group.

The connection of circular units to the class group consists just in the
analytic class number formula, there is no direct algebraic relation. This
formula gives just the class number, so how can we say anything more con-
cerning the structure of the class group?
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Group rings and Z[G]-modules

Recall the notion of a group ring: having a finite group G then the group
ring Z[G] consists of all mappings G→ Z. It is customary to write them as
formal sums:

Z[G] =
{∑
g∈G

agg | ag ∈ Z
}
,

where the addition is defined “componentwise” and the multiplication is
given by formula (rg) · (sh) = (r · s)(g ·h) for each r, s ∈ Z and g, h ∈ G and
by the distributive laws.

For example, if K/Q is a Galois extension and GK = Gal(K/Q) then
the group IK of fractional ideals of K is a Z[GK ]-module, the action of any
α =

∑
σ∈GK aσσ ∈ Z[GK ] on a fractional ideal I is given by

Iα =
∏
σ∈GK

σ(I)aσ .

Similarly (K,+), (K×, ·), (OK ,+), (O×K , ·), (clK , ·) form Z[GK ]-modules.

The class group as a Z[GK ]-module

Let K be an abelian field, GK = Gal(K/Q). For a prime p, let clK,p de-
note the p-Sylow subgroup of clK , and (O×K/CS(K))p the p-Sylow subgroup
of O×K/CS(K).

Sinnott’s formula implies:
if p - 2[K : Q] then |(E(K)/CS(K))p| = | clK,p |.

Example. In general clK,p 6∼= (O×K/CS(K))p. If K = Q(
√

62501) and
p = 3 then clK,p ∼= (Z/3Z)2 while (O×K/CS(K))p ∼= Z/9Z.

What can be said about the structure of these GK-modules?

Conjecture of G. Gras: If p - 2[K : Q] then these Z[GK ]-modules
have the same Jordan-Hölder series.

This is not a conjecture anymore as Greenberg proved that this follows
from the Main Conjecture of Iwasawa theory. And later on Mazur and Wiles
proved the Main Conjecture. An easier proof via Euler system machinery is
based on a work of Thaine and Kolyvagin.
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What are annihilators of the class group?

Let K be an abelian field, GK = Gal(K/Q).

If M is a Z[GK ]-module, the annihilator ideal of M is defined to be
AnnZ[GK ]

(
M
)

= {α ∈ Z[GK ] | αM = 0}, an annihilator of M is any
α ∈ Z[GK ] such that αM = 0.

So the annihilator ideal of the class group clK is

AnnZ[GK ]

(
clK
)

= {α ∈ Z[GK ] | ∀ ideal I of OK : Iα is principal}.

For example the class number | clK | is a nontrivial annihilator of the class
group clK .

The classical source of annihilators of the class group of an abelian field
is the Stickelberger ideal. But it gives no interesting annihilator if the field
is real.

A method producing annihilators of the class group of a real abelian field
via circular units has been discovered by Thaine.

Annihilators of clK via circular units

Theorem (Thaine). Let K be a real abelian field, GK = Gal(K/Q),
let p be a prime, p - [K : Q]. Then

2 ·AnnZ[GK ]

(
(E(K)/CS(K))p

)
⊆ AnnZ[GK ]

(
clK,p

)
.

Thaine’s method was generalized by Rubin. To simplify, we formulate it
here only for a real abelian field K and an odd prime p which does not
ramify in K/Q.

Rubin introduces the notion of a special number ε ∈ K× (each Sinnott’s
circular unit is special) and proves: if we have

• a positive n ∈ Z such that pn - hK ,

• a finitely generated Z[GK ]-submodule V ⊂ K×/(K×)p
n
,

• a Z[GK ]-module homomorphism ρ : V → (Z/pnZ)[GK ] such that each
α ∈ V containing a rational number belongs to ker ρ,

• a special number ε ∈ K× whose class ε̄ = ε(K×)p
n ∈ V ,

then ρ(ε̄) ∈ AnnZ[GK ]

(
clK,p

)
.
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Which numbers are special?

Rubin introduced special numbers for abelian extensions of any number
field. To simplify, let us take the base field Q.

Let K be an abelian field.

Let S be the set of all primes q which splits completely in K/Q.

For a prime q ∈ S, let K(q) = KQ+
q , the compositum of K and of the

maximal real subfield of the q-th cyclotomic field.

Let q̃ be the product of prime ideals of K(q) dividing q.

A number ε ∈ K× is called special if for all but finitely many q ∈ S there
is a unit εq ∈ O×K(q) having the same image in OK(q)/q̃ as ε2 and satisfying

NK(q)/K(εq) = 1.

We have mentioned that in a real abelian field each Sinnott’s circular
unit is special. But it is still an open problem whether in this situation each
special number, which is a unit, belongs to CS(K).
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